

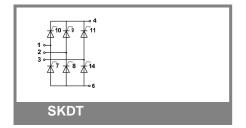
SEMIPONTTM 5

Bridge Rectifier

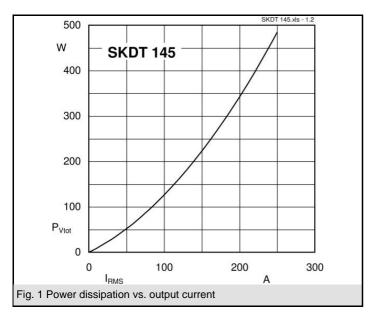
SKDT 145

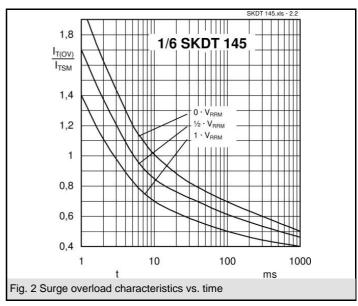
Target Data

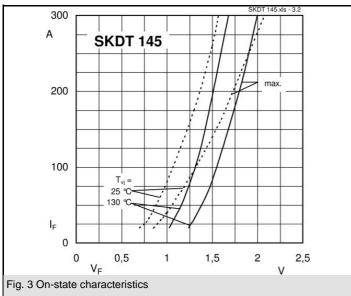
Features

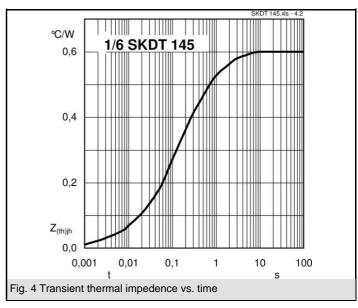

- Compact design
- · Two screws mounting
- Heat transfer and isolation through direct copper board (low R_{th})
- Low resistance in steady-state and high reliability
- · High surge currents
- Glass passivated thyristor chips
- Up to 1600 V reverse voltage
- UL -recognized, file no. E 63 532

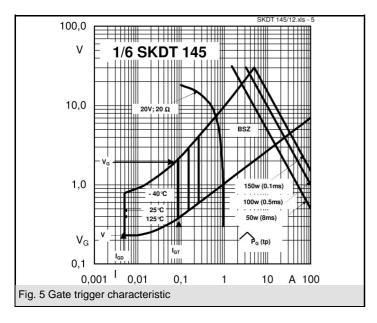
Typical Applications

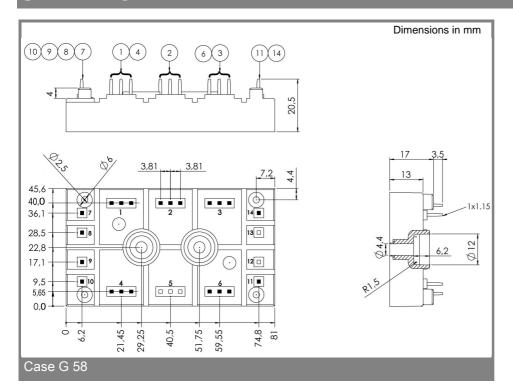

- DC and AC drives
- Controlled field rectifier for DC motors
- Controlled battery charger

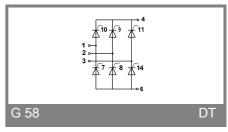

V _{RSM}	V _{RRM} , V _{DRM}	I _D = 140 A (full conduction)
1300	1200	(T _s = 80 °C) SKDT 145/12
1700	1600	SKDT 145/16


Symbol	Conditions	Values	Units
I _D	T _s = 80 °C	140	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	1350	Α
TOW	T _{vi} = 125 °C; 10 ms	1250	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	9000	A²s
	T _{vj} = 125 °C; 8,3 10 ms	7800	A²s
V _T	T _{vj} = 25 °C; I _T = 150A	max. 1,6	V
$V_{T(TO)}$	$T_{vj} = 125 ^{\circ}\text{C};$	max. 0,9	V
r_T	T _{vj} = 125 °C	max. 5	mΩ
$I_{DD}; I_{RD}$	T_{vj} = 125 °C; V_{DD} = V_{DRM} ; V_{RD} = V_{RRM}	max. 20	mA
t _{gd}	$T_{vj} = {^{\circ}C}; I_G = A; di_G/dt = A/\mu s$		μs
t_{gr}	$V_D = \cdot V_{DRM}$		μs
(dv/dt) _{cr}	T _{vi} = 125 °C	max. 500	V/µs
(di/dt) _{cr}	T _{vi} = 125 °C; f = 5060 Hz	max. 50	A/µs
t_q	$T_{vj} = 125 ^{\circ}\text{C}; \text{ typ.}$	150	μs
I _H	T_{vj} = 25 °C; typ. / max.	- / 250	mA
IL	T_{vj} = 25 °C; R_G = 33 Ω	- / 600	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I_{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 150	mA
V_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	T _{vj} = 125 °C; d.c.	max. 6	mA
			K/W
			K/W
$R_{th(j-s)}$	per thyristor	0,6	K/W
T _{vi}		- 40 + 125	°C
T _{stg}		- 40 + 125	°C
T _{solder}	terminals	260	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 (3000)	V
M _s	to heatsink	2,5	Nm
M_t			Nm
m	approx.	75	g
Case		G 58	




SKDT 145





SKDT 145

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.